The Q-Pix pixelated readout concept for future LAr Time Projection Chambers: status and prospects

Gang Liu on behalf of the Q-Pix collaboration

Introduction

- □ Liquid Argon Time Projection Chambers (LArTPC's) offer access to very high quality and detailed information
- Leveraging this information allows unprecedented access to detailed neutrino interaction specifics from MeV GeV scales
- □ Capturing this data w/o compromise and maintaining the intrinsic 3-D quality is an essential component of all LArTPC readout

LAr pixel readout vs. wire readout

- □ Conventional LArTPC's use sets of wire planes at different orientations for reconstruction
 - Challenge in reconstruction of complex topologies
- ☐ Kiloton scale LArTPC's use 'wrapped wire' geometries to reduce the number of channels
 - Challenge to engineer such massive structures
- ☐ Being able to readout using pixels instead of wires could be a solution
 - Cost much more channels!
 - Example: 2 meter x 2 meter readout : **3mm wire pitch w/ three planes = 2450 channels**

3mm pixel pitch = 422,000 channels

- Pixel solution requires innovation in the readout electronics
 - Need to meet the heat load restrictions w/ a 100X higher channel number
- □ Requires an 'unorthodox' solution

'unorthodox' solution

- ☐ Kiloton scale LArTPC's (such as DUNE) afford a huge 'big data' challenge
- □ Most of the time there is 'nothing of interest', but must be ready when something happens
- □ The Q-Pix pixel readout follows the 'electronic principle of least action'
 - Don't do anything unless there is something to do
 - Offers a solution to the immense data rates
 - Allows for the pixelization of massive detectors
- Q-Pix offers an innovation in signal capture with a new approach and measure time-to-charge
 - Preserves the detailed waveforms of the LArTPC
 - Attempts to exploit 39Ar to provide an automatic charge calibration

Q-Pix: the Charge Integrate-Reset (CIR) Block

- □ Charge from a pixel (In) integrates on a Charge sensitive amplifier (A) until a threshold is met which fires the Schmitt Triger (S) to cause a rest and the loop repeats
- ☐ Measure the time of the 'reset' with a local clock
- \square Reset Time Difference = $\triangle Q$

Q-Pix analog front end - First attempt

Schematic Level design in 180nm Silicon Proven @LAr temperatures -186C°

re: LArASIC (BNL) and LArPix (LBNL)

Single (FE only) Channel POWER/ch Present FE Design 34μW Projected final prototype FE **25μW**

Q-Pix analog front end - Improved design

Schematic level 180nm Technology

Similar Power to Original

Simulation results with physics generated signal

Reconstruction of the signal using reset time marking

Fixed Q reset time marking circuit first pass assessment

- ☐ Simple and reasonable approach
- □ Pixel accumulates charge causing "lag" that is not reset in time but charge loss is limited.
- Suitable for a prototype circuit (with some improvement)
- ☐ This version instigates a second idea:

Why not simply replace the charge

... no need to disconnect from the pixel

Q-Pix analog front end - Replenishment circuit

Schematic level 180nm Technology

Similar Power to Original

Full Replenishment Channel layout

~ 40uW still to be optimized

Q-Pix digital back end concept

- □ 16 32 64 pixels / ASIC
 - 1 free-running clock/ASIC
 - 1 capture register for clock value
 - Necessary buffer depth for beam/burst events
 - State machine to manage dynamic network, token passing, clock domain
 Crossing, data transfer to network
- □ Basic unit would be a 'tile' of 16x16 ASICs (4096 4mm x 4mm pixels)
 - Tile size 25.6cm x 25.6cm

Q-Pix operating principle – programmable-data-path network

- Q-Pix ASICs: programmable-data-path network and asynchronous communication
 - programmable-data-path: The readout data path could be programmable to build up the network through one another.
 - This network should be robust, no single failure should make the tile unusable.
 - Only one or a few ASICs talk to the outside world to simplify the overall system.
 - Register R/W (including trigger) is broadcasted to all neighbor ASICs.
 - If ASIC coordinates are specified then only given ASIC preforms the action.

Q-Pix operating principle – asynchronous communication

- Q-Pix ASICs: programmable-data-path network and asynchronous communication
 - Asynchronous: each ASIC runs on its own clock at a given nominal frequency.
 - Clock frequency may differ slightly.
 - Asynchronous communication protocol should be able to tolerate the frequency difference.
 - Two protocols have been implemented so far

Free running clock

- ☐ 3 stage ring oscillator
- Differential structure
- R2R DAC and power supply component

Vctrl

Delay

Vctrl

Delay

Vctrl

Q-Pix digital prototype plan

Options

- A single chip comprising both analog and digital components
- 2 Two separate chips. Q-reset pulses are being fed to digital component instead of timestamps.

☐ Goals

- Receive and buffer the timestamps of the charge reset signal from the analog part.
- Combine data packets containing the timestamps, channel number along w/ the service information like error flags.
- Route the data packets from the ASICs where they are generated to DAQ node.

Q-Pix digital back end structure

- QPixComm: communication with other ASICs
- QPixRegFile: store the configuration and status
- QPixDataProc: receive the data from analog part
- QPixRoute: contain FIFO for local and remote hits,also contain routing FSM
- QPixDebug: for debugging

Basic state machine scheme

Q-Pix digital prototyping and verification

colored - implemented/in progress

ASICs with 4 connections are being used as the most generic example. In future we will study different connection schemes.

Device

- Xilinx Zynq-7000 SoC
- Readout through ARM processing system
- Communication with PC via 1G Ethernet

Prototyping goals

- Implement the full functionality of the chips
- Test and optimize : routing schemes, chips connectivity, data formats, register mapping etc.
- Template for a DAQ module firmware as a byproduct

Summary and Outlook

- Low power pixel based readout for LArTPC's have promise to enhance the capabilities of these detectors
 - The LArPix team has pioneered the demonstration of this technology for application to the DUNE detector
 - Q-Pix is futuring this work to target the low occupancy environment found in the DUNE far detector
- Three versions of the low power Front-end circuit have been developed
- A back-end readout method based on the programmable-data-path network and asynchronous communication has been implemented
- The prototype ASIC in under development, which will answer many important questions
- Q-Pix consortium would like to thank the DOE for its support

Thanks!